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1. Introduction

PT-symmetric quantum systems have generated much interest in recent years
[1]. About 10 years ago, Besis suggested that the eigenvalue spectrum of com-
plex-valued Hamiltonians is real and positive. Bender and Boettcher claimed that
this result is due to PT-symmetry where P and T are the parity and time rever-
sal operators, respectively. It is neither a necessary nor a sufficient condition for a
Hamiltonian to have real spectrum. In particular, the spectrum of the Hamiltonian
is real if PT-symmetry is not spontaneously broken. Thus, the property of exact-
ness guarantees the real eigenvalues. Recently, Mostafazadeh introduced another
concept for a class of PT-invariant Hamiltonians called η−pseudo−Hermiticity

[2]. In fact, Hamiltonians of this type satisfy the transformation ηĤη−1 = Ĥ † [3].
Moreover, completeness and orthonormality conditions for the eigenstates of such
potentials are proposed [4]. Various techniques have been applied in the study
of PT-invariant potentials such as variational methods [5], numerical approaches
[6], Fourier analysis [7], semi-classical estimates [8], quantum field theory [9] and
Lie group theoretical approaches [10–13]. In the applications, a generalization of
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the symmetry concept is encountered in the supersymmetric quantum mechanics
(SUSYQM) [14]. A variety of PT-symmetric examples can be found using the
SUSYQM techniques [15–20]. Furthermore, one can get more examples of the
PT-symmetric and non-PT-symmetric and also non-Hermitian potential cases
such as oscillator type potentials [21], flat, step and double square-well like poten-
tials within the framework of SUSYQM [22,23], exponential type screened poten-
tials [24], quasi/conditionally exactly solvable ones [25], complex Hénon–Heiles
potentials [26], periodic isospectral potentials [27] and some others [28,29].

The aim of the present work is to calculate the energy eigenvalues and the
corresponding eigenfunctions of the deformed Morse and Pöschl-Teller poten-
tials using the Hamiltonian hierarchy method [30] within the framework of the
PT-SUSYQM. This method is also known as the factorization method intro-
duced by Schrödinger [31] and later developed by Infeld and Hull [32]. It is useful
to obtain the energy spectra for different potentials in non-relativistic quantum
mechanics [33–35].

The organization of this paper is as follows: In Section 2 we introduce a
brief review of the Hamiltonian hierarchy method. In Section 3 and 4 we pres-
ent the supersymmetric solutions of PT-symmetric and Hermitian/non-Hermitian
forms of the well-known potentials by using this method. We discuss the results
in Section 5.

2. Hamiltonian hierarchy method

The radial Schrödinger equation for some specific potential energies can be
solved analytically only for the states with zero angular momentum [36,37]. How-
ever, in supersymmetric quantum mechanics, one can get exact results with the
hierarchy problem by using effective potentials for non-zero angular momentum
states. In the framework of SUSYQM, this method provides an eigenvalue spectra
for adjacent members of supersymmetric partner Hamiltonians. These Hamilto-
nians share the same eigenvalue spectra except for the missing ground state.

In the application of this method, we first look for an effective potential
similar to the original specific potential and inspired by the SUSYQM to pro-
pose a superpotential, namely W(l+1)(x), as an ansatz, where (l + 1) denotes the
partner number with l = 0, 1, 2 . . . . Substituting the proposed superpotential
into the Riccati equation,

V(l+1)(x) − E0
(l+1) = W 2

(l+1)(x) − dW(l+1)(x)

dx
, (1)

the (l + 1)th member of the Hamiltonian hierarchy can he obtained. Taking into
account the shape invariance requirement [14], the bound-state energies can be
obtained through equation (1), and the corresponding eigenfunctions by means of
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�(l+1)(x) = N exp
(

−
∫ x

W(l+1)(x
′)dx ′

)
. (2)

3. Generalized Morse potential

The generalized Morse potential is given by [24]

V (x) = V1e−2αx − V2e−αx. (3)

To apply the Hamiltonian hierarchy method, we shall take the coefficients as
V1 = V , and V2/V1 = q. Inspired by the SUSYQM, we propose an ansatz for
the superpotential

W(l+1)(x) = −λe−αx +
(

λq − 2l + 1
2

)
, (4)

where, λ2 = 2mV /a2h2, and (2l + 1) denotes the partner number with l =
0, 1, 2, . . . , and the parameter m is the reduced mass of a diatomic molecule. The
superpotential chosen in equation (4) leads to the (l +1)th member of the Ham-
iltonian hierarchy through the Riccati equation as,

V(l+1)(x) − E0
(l+1) = W 2

(l+1)(x) − 1
α

dW(l+1)(x)

dx
, (5)

which yields,

V(l+1)(x) = λ2(e−2αx − qe−αx) + 2lλe−αx. (6)

Now, using the shape invariance requirement, the energy eigenvalues for any nth
state become,

En
(l+1) = −

(
λq − 2l + n + 1

2

)2

, n = 0, 1, 2, . . . (7)

The corresponding eigenfunctions are obtained through equation (2) as

�n=0
(l+1)(x) = N exp

[
−λ

α
e−αx −

(
λq − 2l + 1

2

)
x

]
, (8)

where, N is the normalization constant.
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3.1. Non-PT symmetric and non-Hermitian Morse case

We define the potential parameters in equation (3) as V1 = (A + iB)2, V2 =
(2C + 1)(A + iB), and α = 1. A, B and C are real, and i = √−1. For simplic-
ity we define A + iB = iω, (A + iB)2 = −ω2, 2C + 1 = K. Thus, the potential
becomes

V (x) = −ω2

K

[
Ke−2x − K2

iω
e−x

]
. (9)

To get the final compact form, we also define ω2

K
= G, and K2

ω
= t , and GK = D,

and also t
K

= P . As a result, we get,

V (x) = −D
[
e−2x + iP e−x

]
. (10)

We propose an ansatz for the superpotential as,

W(l+1)(x) = −iλe−x +
(

λ − 2l + 1
2

)
, (11)

where λ2 = 2mD

h2 . Consequently, according to the Hamiltonian hierarchy method,
we get,

V(l+1)(x) = −λ2(e−2x + 2ie−x) + 2ilλe−x, (12)

By substituting this into equation (1), the corresponding eigenvalues and eigen-
functions are obtained as

En
(l+1) = −

(
λ − n + 2l + 1

2

)2

, n = 0, 1, 2, . . . , (13)

and

�n−0
(l+1)(x) = N exp

[
−iλe−x −

(
λ − 2l + 1

2

)
x

]
, (14)

where, N is a normalization constant.

3.2. The first type of PT-symmetric and non-Hermitian Morse case

We take the coefficients of the generalized Morse potential as V1 = (A+iB)2,
V2 = (2C + 1)(A+ iB), and α = i. Following the same procedure, we propose an
ansatz for the superpotential

W(l+1)(x) = −λe−ix +
(

λ − 2l + 1
2

)
. (15)
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The Hamiltonian hierarchy method yields,

V(l+1)(x) = λ2(e−2ix − e−ix) + 2lλe−ix. (16)

This form of potential gives the same eigenvalues as in equation (13).

3.3. The second type of PT-symmetric and non-Hermitian Morse case

Now, we take the parameters as V1 = −ω2, and V2 = D, and α = iα in
equation (3), where V1 and V2 are real. For V1 �⇒ 0, we get no real spectra for
this kind of PT-symmetric Morse potentials. The superpotential can be proposed
as,

W(l+1)(x) = −e−iαx +
(

2l + 1 + D

2ω

)
. (17)

By applying the Hamiltonian hierarchy method, we get the potential

V(l+1)(x) = e−2iαx − 2
[
(2l + 1) + D

2ω
+ iα

2

]
e−iαx, (18)

and the corresponding eigenvalues for any nth state are,

En
(l+1) = −

(
2l + n + 1 + D

2ω

)2

. (19)

4. Pöschl-Teller potential

The Pöschl-Teller potential is given as,

V (x) = −4V0
e−2αx

(1 + qe−2αx)2
. (20)

In the framework of the SUSYQM, the corresponding superpotential can be
proposed as,

W(l+1)(x) = −
–h√
2m

(l + 1)e−2αx

(1 + qe−2αx)2
+

√
m

2
e2

–h

[
1

(l + 1)
− (l + 1)

2
β

]
, (21)

where, β = h2/me2, and l = 0, 1, 2, . . . By applying the Hamiltonian hierarchy
method we get,

V(l+1)(x) =
–h2

2m

e−4αx

(1 + qe−2αx)4
l(l + 1) − e2 e−2αx

(1 + qe−2αx)2

[
1 − l(l + 1)

β

2

]
. (22)
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As a result, the corresponding eigenvalues of this potential for any nth state are,

En
(l+1) = q2me4

2h2

[
1

(n + l + 1)
− (n + l + 1)

2
β

]2

. (23)

The corresponding eigenfunctions are,

�n=0
(l+1)(x) = N

(
1 + qe−2αx

)l+1
exp

{
−me2

h2

[
1

l + 1
− (l + 1)

2
β

]
x

}
, (24)

where, N is a normalization constant.

4.1. Non-PT symmetric and non-Hermitian Pöschl-Teller cases

Here, V0 and q are complex parameters: V0 = V0R + iV0I and q = qR + iqI ,
but α is a real parameter. Although the potential is complex and the correspond-
ing Hamiltonian is non-Hermitian and also non-PT-symmetric, there may be real
spectra if and only if V0I qR = V0RqI . When both parameters V0, and q are taken
pure imaginary, the potential turns out to be,

V (x) = −4V0
2qe−4αx + i(1 − q2e−4αx)

(1 + q2e−4αx)2
. (25)

For simplicity, we use the notation V0 and q instead of V0I and qI . To obtain
the energy eigenvalues, we propose the superpotential

W(l+1)(x) = −
–h√
2m

(l + 1)qe−4αx

(1 + q2e−4αx)2
+

√
m

2
e2

h

[
1

(l + 1)
− (l + 1)

2
β

]
. (26)

Therefore, substituting this equation into the Riccati equation, we get the same
potential as in equation (22), and also the same energy eigenvalues as in equa-
tion (23).

4.2. PT-symmetric and non-Hermitian Pöschl-Teller cases

We choose the parameters V0 and q as real, and also α �⇒ iα in equation
(25). Here, we propose the superpotential similar to this potential as,

W(l+1)(x) = −
–h√
2m

(l + 1)qe−4iαx

(1 + q2e−4iαx)2
+

√
m

2
e2

–h

[
1

(l + 1)
− (l + 1)

2
β

]
. (27)

By applying the same procedure, we get the energy eigenvalues as in equa-
tion (23).
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5. Conclusions

We have applied the PT-symmetric formulation to solve the Schrödinger
equation for more general Morse and Pöschl-Teller potentials. The Hamilto-
nian hierarchy method within the framework of the SUSYQM is used. We have
obtained the energy eigenvalues and the corresponding eigenfunctions for differ-
ent forms of these potentials. The energy spectrum of the PT-invariant com-
plex-valued non-Hermitian potentials may be real or complex depending on the
parameter values. We have imposed some restrictions on the potential parame-
ters to get the real spectra in PT-symmetric, or more generally, in non-Hermitian
cases. It is also pointed out that the superpotentials, and partners must sat-
isfy the PT-symmetry condition. Finally, we have pointed out that our exact
results of complexified general Morse and Pöschl-Teller potentials may increase
the number of applications in the study of different quantum systems.
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